3,922 research outputs found

    Toward Precision Education: Educational Data Mining and Learning Analytics for Identifying Students’ Learning Patterns with Ebook Systems

    Get PDF
    Precision education is now recognized as a new challenge of applying artificial intelligence, machine learning, and learning analytics to improve both learning performance and teaching quality. To promote precision education, digital learning platforms have been widely used to collect educational records of students’ behavior, performance, and other types of interaction. On the other hand, the increasing volume of students’ learning behavioral data in virtual learning environments provides opportunities for mining data on these students’ learning patterns. Accordingly, identifying students’ online learning patterns on various digital learning platforms has drawn the interest of the learning analytics and educational data mining research communities. In this study, the authors applied data analytics methods to examine the learning patterns of students using an ebook system for one semester in an undergraduate course. The authors used a clustering approach to identify subgroups of students with different learning patterns. Several subgroups were identified, and the students’ learning patterns in each subgroup were determined accordingly. In addition, the association between these students’ learning patterns and their learning outcomes from the course was investigated. The findings of this study provide educators opportunities to predict students’ learning outcomes by analyzing their online learning behaviors and providing timely intervention for improving their learning experience, which achieves one of the goals of learning analytics as part of precision education

    Using a Summarized Lecture Material Recommendation System to Enhance Students’ Preclass Preparation in a Flipped Classroom

    Get PDF
    Research has revealed the positive effects of flipped classroom approaches on students’ learning engagement and performance compared with conventional lecture-based classrooms. However, because of a lack of out-of-class learning support, many students fail to comprehensively prepare the provided lecture materials before class. One promising solution to this problem is recommendation systems in the educational area, which have been instrumental in helping learners identify useful and relevant lecture materials that satisfy their learning needs. Thus, in this study, we propose a summarized lecture material recommendation system, which is integrated into an e-book reading system as an enhancement of the flipped classroom approach. This system helps students identify pages that contain essential knowledge that must be thoroughly studied before class. The proposed system was constructed on the basis of our previous work. In this study, a quasi-experiment was conducted in a graduate course that implemented the flipped classroom model: experimental group students learned with the proposed system, whereas the control group students had no access to the additional features. The findings of this study suggest that students who learn with the proposed recommendation system significantly outperform those who learn without the system in a flipped classroom in terms of their learning outcomes and engagement in preclass preparation

    The Influence of Molecular Adsorption on Elongating Gold Nanowires

    Full text link
    Using molecular dynamics simulations, we study the impact of physisorbing adsorbates on the structural and mechanical evolution of gold nanowires (AuNWs) undergoing elongation. We used various adsorbate models in our simulations, with each model giving rise to a different surface coverage and mobility of the adsorbed phase. We find that the local structure and mobility of the adsorbed phase remains relatively uniform across all segments of an elongating AuNW, except for the thinning region of the wire where the high mobility of Au atoms disrupts the monolayer structure, giving rise to higher solvent mobility. We analyzed the AuNW trajectories by measuring the ductile elongation of the wires and detecting the presence of characteristic structural motifs that appeared during elongation. Our findings indicate that adsorbates facilitate the formation of high-energy structural motifs and lead to significantly higher ductile elongations. In particular, our simulations result in a large number of monatomic chains and helical structures possessing mechanical stability in excess of what we observe in vacuum. Conversely, we find that a molecular species that interacts weakly (i.e., does not adsorb) with AuNWs worsens the mechanical stability of monatomic chains.Comment: To appear in Journal of Physical Chemistry

    Rotational and Nuclear-Spin Level Dependent Photodissociation Dynamics of H<sub>2</sub>S

    Get PDF
    The photodissociation dynamics of small molecules in the vacuum ultraviolet range can have key implications for astrochemical modelling, but revealing such dynamical details is a challenging task. Here the authors, combining high resolution experimental techniques, provide a detailed description of the fragmentation dynamics of selected rotational levels of a predissociated Rydberg state of H2S

    Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition

    Get PDF
    Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the S. Mg1 genome. We observed that aerial growth by the ΔsfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition

    Topological Interactions in Warped Extra Dimensions

    Get PDF
    Topological interactions will be generated in theories with compact extra dimensions where fermionic chiral zero modes have different localizations. This is the case in many warped extra dimension models where the right-handed top quark is typically localized away from the left-handed one. Using deconstruction techniques, we study the topological interactions in these models. These interactions appear as trilinear and quadrilinear gauge boson couplings in low energy effective theories with three or more sites, as well as in the continuum limit. We derive the form of these interactions for various cases, including examples of Abelian, non-Abelian and product gauge groups of phenomenological interest. The topological interactions provide a window into the more fundamental aspects of these theories and could result in unique signatures at the Large Hadron Collider, some of which we explore.Comment: 40 pages, 10 figures, 2 tables; modifications in the KK parity discussion, final version at JHE

    Atomistic origins of high-performance in hybrid halide perovskite solar cells

    Get PDF
    The performance of organometallic perovskite solar cells has rapidly surpassed that of both conventional dye-sensitised and organic photovoltaics. High power conversion efficiency can be realised in both mesoporous and thin-film device architectures. We address the origin of this success in the context of the materials chemistry and physics of the bulk perovskite as described by electronic structure calculations. In addition to the basic optoelectronic properties essential for an efficient photovoltaic device (spectrally suitable band gap, high optical absorption, low carrier effective masses), the materials are structurally and compositionally flexible. As we show, hybrid perovskites exhibit spontaneous electric polarisation; we also suggest ways in which this can be tuned through judicious choice of the organic cation. The presence of ferroelectric domains will result in internal junctions that may aid separation of photoexcited electron and hole pairs, and reduction of recombination through segregation of charge carriers. The combination of high dielectric constant and low effective mass promotes both Wannier-Mott exciton separation and effective ionisation of donor and acceptor defects. The photoferroic effect could be exploited in nanostructured films to generate a higher open circuit voltage and may contribute to the current-voltage hysteresis observed in perovskite solar cells.Comment: 6 pages, 5 figure

    Ribosomal oxygenases are structurally conserved from prokaryotes to humans

    Get PDF
    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone NΔ-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases
    • 

    corecore